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THE LAW OF ERROR AND THE COMBINATION
OF OBSERVATIONS

By Harorp JEFFREYS, F.R.S.

(Recetved 18 December 1937)

p
A
JA '\

A A

o 1. The normal or Gaussian law of error rests partly on a particular hypothesis
= partly P yp
< — about the nature of error, that the error of any individual observation is the resultant
E —~ of a large number of comparable and independent components; and partly on com-
= arison with frequencies in actual series of observations. Both arguments are defective.
— p q g
SAN@P) The theory does not prove that the law is true for errors of any magnitude, even if its
Eg fundamental hypothesis is accepted. It involves a number of approximations, and

when the effects of these are examined it is found that the law should hold only up to
a moderate multiple of the standard error. This is obvious in the simplest case of the
binomial distribution, since the normal law predicts a finite though small chance of
an error of any amount, but the binomial law is rigidly limited at each end. The assertion
of the normal law for errors of any magnitude as the limit of the binomial really assumes
that the number of components is infinite, and that all have the same infinitesimal range.
This is a very remarkable hypothesis. There may be some inductive reason, in cases
where many sources of variation have already been determined and allowed for, to
suppose that there are several others just below the magnitude that can be detected
separately; but there is every reason to suppose that these are not infinite in number,
but merely the largest members of a convergent series, and in such a case there is no
reason to suppose that their resultant will tend to the normal law. Whittaker and
Robinson give a striking example to the contrary (1924, p. 178), where the components
all follow the median law and their magnitudes diminish. Indeed, if there is one
dominant component the law for the resultant will approximate to the law for that
component separately. Even if there are several equal components the proof may fail.
Fisher has shown (1922, p. 321) that if several errors follow the law
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= the mean of any number will follow the same law with the same constants. The sum of
= O m will therefore also follow this law except that the scale is altered in the ratio 1 to m.
E 8 If we use the range between the inflexions as astandard of scale, itincreasesin proportion

to m, not to m* as in the composition of normal errors, and the form of the law does not
approach the normal at all as the number of components increases. The theory can
therefore be regarded only as an indication that in suitable circumstances the normal
law may be a good approximation up to a few times the standard error; but in the
very conditions where this approximation is likely to be at its best there is no reason to
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232 HAROLD JEFFREYS ON THE

assert the law for all values of the error. Even in the case where the components are
equal and independent there may be no approach to the normal, as the above example
shows. This is because the transformations involved in the proof are possible only
subject to a hypothesis about the rate of convergence of the series expansion of the
moment-generating function, which is violated by the above form.

K. Pearson showed long ago (1900) that some series of residuals published in support
of the law showed as great departures from it as would warrant the rejection of any
scientific hypothesis; in a later paper (19o2) he made a study of actual observations
by himself and three collaborators, and again found substantial departures. The law
continues, however, to be generally applied. Even some of those who explicitly reject
it appear to regard it as an indication of special virtue to retain all observations at equal
weight and to take their mean as the best value; they often, however, take the average
error without regard to sign or some other substitute in place of the standard deviation
as their estimate of accuracy. But the three hypotheses (1) that the normal law is
correct, (2) that the mean is the best value, (3) that the mean square residual provides
the best standard of accuracy, are all equivalent; any one of them implies the other two.
If the normal law is wrong, it is also wrong to use the arithmetic mean; if the arithmetic
mean is the best summary value to adopt, its uncertainty is correctly estimated from
the mean square residual and from no other statistic. The use of the average error
without regard to sign is sometimes recommended because it is less influenced by large
outstanding residuals than the standard deviation is; but this involves a confusion.
Subject to a certain condition of convergence, if we adopt the mean as our estimate,
then whether the normal law is true or not the uncertainty of the true value, given the
mean, is found from the standard deviation and nothing else. If the average residual
is used instead, there will usually be little difference beyond a slight increase of the
uncertainty if the normal law is true; but if the normal law is true and there happen,
in a particular case, to be a few exceptionally large residuals, or if it is untrue and there
are residuals beyond the range predicted by it, the average error will lead to an under-
estimate of the uncertainty of the true value as estimated from the mean. In fact, the
case where the use of the average error is recommended is precisely the one where its
use is most undesirable. The large residuals, in this treatment, have already received
full weight in estimating the mean, and if they have led to error in the mean they must
also be given full weight in estimating the standard deviation.

If the normal law is wrong, on the other hand, neither the mean nor the standard
deviation is the best estimate to use in finding the true value and its uncertainty, and
we should try to find out in what respects it is wrong and correct the postulate of the
arithmetic mean accordingly. The rejection of the postulate of the mean is not the same
as the rejection of observations. The latter means that every observation is either
retained at full weight and used to form the mean, or else absolutely rejected. The
decision with respect to a single doubtful outlying observation may easily affect the
position of the mean by its standard error, and such an effect of the position of the limit


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A A

a
N A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LAW OF ERROR AND COMBINATION OF OBSERVATIONS 233

of retention may fairly be described as intolerable. If we adapt our discussion to any
continuous law of error, on the other hand, the weight will be a continuous function
of the residual, and no great change will be made by a slight alteration in the parameters
in that law. In discussing seismological observations I have found that the data lead
to a satisfactory determination of the law of error (1936), which departs widely from
the normal, but when this is used to estimate weights and the data are summarized
accordingly the agreement between different sets of estimates is very good (1937d).
In most physical observations the departure from the normal law is not so great as it
was in these seismological ones, but it is appreciable. It is often remarked that large
residuals occur oftener than the normal law would indicate, and the actual excess
may be larger than is recorded, since a “ bad observation” may be rejected at sight with-
out being recorded at all. There is, however, no hard and fast line between a good
observation and a bad one. With a correct system of weights these outlying observations
would receive low weight and it would make little difference whether they were retained
or not; but the uncertainty found will be genuine, which is not the case when the
arithmetic mean of all observed values within certain arbitrary limits is the only estimate
considered. Even if, as may well be true, the normal law is correct up to a certain
multiple of the standard error, and this range includes most of the probability distribu-
tion, this does not justify the use of equal weights except within that range. If the law,
with respect to the unknown g, is that the chance of an observation in a particular range
dx is f(x—a) dx, the correct equation to estimate a is

sfE=a 1
Jie—a 2
This is equivalent to the rule of the arithmetic mean
X(x—a) =0 (2)

only if the law of error is normal at all values of x whatever. Ifthe chance falls off with x
less rapidly at the tails than the normal law suggests, the terms in (1) for large x—a
are smaller in comparison with those in (2) than for moderate x — a, and this is equivalent
to giving reduced weight to the large residuals. Ifit falls off more rapidly, the weights
must be increased. Cases of both types are known. For the former, we have the case
given by Fisher, which would be realized if lines, equally likely to lie in any direction,
were drawn through a point in a plane, and we had to estimate the position of the
point, using as data the positions of the intersections of the lines with a known line. In
this case the mean is no more accurate than one observation, but a suitable method of
fitting will give high accuracy. Fisher (1922, pp. 348—51) gives the rectangular dis-
tribution as an instance of the second type; that is, the case where /() is uniform between
certain values of x, and zero outside those values. Here the extreme observations
contain the whole of the relevant information in the sample. The mean square error
of the mean of the two extreme observations decreases with the number of observations

like #~!, that of the mean of all n only like n~*. It has been argued that with any
30-2
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234 HAROLD JEFFREYS ON THE

symmetrical law of error the mean is valid, because it will be expected to tend to the
true value when 7 is large; but this is not necessarily the case, and even if it is the case
there may be other functions of the observations that will tend to the true value more
rapidly, and should be used if the best use is to be made of a finite number of observa-
tions.

2. The testing of the normal law and the determination of corrections to it requires
the use of long and homogeneous series of observations. These are difficult to find.
The published data that are capable of providing comparisons fall into four main
classes, which must be carefully distinguished:

(1) Genuine binomial distributions. In these the departure is the resultant of several
strictly equal variations, all independent and each capable of only two values, which are
the same for all components.

(2) Distributions resembling binomial ones except that the components are not
strictly equal and may not all follow the same law; but it is known that they are
numerous and comparable in amount.

(3) Real variations of a magnitude, to which error of observation makes a minor
or negligible contribution.

(4) Residuals whose variation is not accounted for by any known cause except human
inaccuracy.

Evidence derived from one of these types of data cannot be applied to another type
without special reason. If binomial distributions are found to agree with the normal
law, that affords no ground for applying the law to human inaccuracies unless these
also are made up in the binomial way, which there is no reason to believe.

(1) With regard to the binomial distribution, which approaches the normal asymp-
totically when the number of components is large, it appears to be supposed in some
presentations that the derivation of the normal law in this way requires the com-
ponents to be infinite in number and each infinitesimal in amount. This is not the
case. The approximation is very good for quite small numbers of components. Thus for
three component departures -+ 1 from the mean, the standard error ¢ is /3, and the
following are the calculated expectations according to the binomial law and according
to the normal law with the same value of 7, for eight observations in all. To make the
data comparable the observations with the normal law are supposed rounded to the
nearest odd number:

< —4 -3 —1 +1 +3 >4
Binomial 0 1 3 3 1 0
Normal 0-084 0-908 3:008 3:008 0-908 0-084

For four components and sixteen observations the expectations in ranges about the
even numbers are as follows:

< -5 —4 —2 0 +2 +4 >+5
Binomial 0 1 4 6 4 1 0
Normal 0-10 0-97 3-86 6:13 3:86 0-97 0-10
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LAW OF ERROR AND COMBINATION OF OBSERVATIONS 235

In neither case do the probabilities of one observation falling in a particular range
differ by more than 0-012. To see what this means with regard to testing the normal
law, let us suppose that n observations are made and that we are given only the totals
by ranges to compare by the y? test with the postulate that they are derived from the
normal law; and that in fact they are derived from a binomial law with three com-
ponents. According to the usual rule for applying the test when some of the expectations
are small, the terminal groups cannot be taken separately until the expectations in
them, according to the hypothesis to be tested, reach 5. Until this happens they will
be combined with the adjacent groups before §2is evaluated. Thus they will not appear
separately in the test until z reaches 8 x 5/0-084 = about 480. Until then the expecta-
tions, for given n, will be

< -2 -1 +1 >+2
Binomial 0-125n 0-375n 0-375n 0-125n
Normal 0-124n 0:376n 0:376n 0:124n

Now if the actual frequencies agreed exactly with the binomial expectations we should
compute y* from the usual formula for frequencies

x (mr“ nr)z

n,

X =

b

where m, is the observed number and 7, the expectation in each group. Thus we should

have :
2 2

_._ -5
0-124n+0-376n) = 2x107n

X2 = 0'0012722(

roughly; and the contribution to it from the departure, for n< 480, cannot exceed 0-01.
There is no possibility, therefore, of detecting the difference with less than 480 observa-
tions if the test is applied in the usual way.

For more than 480 observations the expectations in the terminal groups, according
to the binomial law, will exceed 5 and they can be taken separately. The expectations
will be just #/8 times the values for n = 8. The contribution to ¥ will therefore be

0-01052 0-01152 0-0012

M2X 50105 T2 % o113 2% 0376

— 0-0233n,
of which 0-0210z comes from the terminal groups.

If the mean and standard error are given there are 5 degrees of freedom, and the
5 9 limit is at y? = 11-07. The expectation of the contributions of random variations
to x? is 5; hence if we are to have any reasonable chance of detecting a systematic
departure it must contribute about 6 to x2. This means that » must be about 260.
Thus the test would detect the departure as soon as it became applicable to the terminal
groups, but not before. It would take 480 observations to show by this method that the
normal law did not hold, even though the number of component errors is as small
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236 HAROLD JEFFREYS ON THE

as 3, and the evidence would not come from discrepancies within the range where
observations exist but from their absence where we should expect them.

In practice, if we were given the individual observations for such a series, we should
discard the normal law on account of the fact that the observations are all separated
by integral multiples of a constant. This would suggest a variation of the binomial
type. But if instead of three sources of error, each capable of giving only two values,
we had three each implying a uniform distribution of the chance of error between two
fixed limits, the observations would not reveal their discreteness in this way, and also
the difference between the true law and the normal would be less, and would take more
observations to reveal it.

This can be seen in a still more extreme case by considering the triangular distribution
of error ‘

Pldx) =31 —$x)dx 0<x<2,
Pldr) =3(1+%x)dx —2<x<0,

which has standard error /2. With this form the probabilities in ranges grouped about
the integers, and the corresponding ones for the normal law with the same second
moment are

-3 -2 —1 0 1 2 3
Triangular 0 0-03125 0-2500 0-4375 0-2500 0-03125 0
Normal 0-0011 0-0320 0-2370 0-4597 0-2370 0-0320 0-0011

If we are testing normality, and the actual distribution is triangular, the end groups
will not come into consideration till there are about 4500 observations. Combining
them with the ranges centred on -+ 2, we have the contributions to x*

0-001852 0-0130% 0-02222
[2 0-0331 2% 0-2370 " o-am7 |~ 002

As before, the systematic departure would have to contribute about 6 to y* before it
would have any appreciable chance of being detected. Thus about 2200 observations
would be needed. But the triangular distribution is the result of combining only two
uniform distributions between fixed limits. Lest it should be thought that the laws are
so similar that we should be entitled to combine observations according to them in the
same way, we notice that the equation for determining the mode, if the law of chance
is f(x —a) dx, is . )

Xx—a

= fa=a) "

taken over the observations. But f'(x—a) is constant on each side, while f(x—a)
diminishes steadily to zero at 4-2. The most important terms therefore come from the
extreme observations. Indeed, if we simply took the mean of the extreme observations
by themselves we should get almost as good an estimate as by taking the mean of all,
though neither makes full use of the data. To adapt a method given by Fisher (1922,
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LAW OF ERROR AND COMBINATION OF OBSERVATIONS 237

P- 348), the chance of an observation within a small distance y of 2is $y2. The probability
that no observation out of # lies in this range is (1 —1y?)* = exp(— {ny?) nearly. The
probability that the extreme one of z lies between y and y + dy is therefore the differential
of this, or nydy exp(— iny?) dy. Then we find easily that the expectation of the distance
of the end observation from 2 is ,/(27/n)%, and that of the square of the distance is 8/n.
If then we simply go -+ (27/n)% beyond the extreme observation at each end, we fix
the positions of the ends with standard error 1-31/,/n. The mean of the results will have
standard error 0-926/,/n. But the mean of all the n observations will have standard
error ¢/,/n = 0-816/,/n. Itis impossible to give a general formula for the standard error
when the whole of the data are used; in any particular case it will be given by

1
o2 =2 2 (x_a)?’
but the sum becomes so large and varies so rapidly with the distances of the terminal
observations from -+ 2 that no convenient approximation is possible. The difference
is even more marked when we consider the scale of the distribution. If the terminal
observations are corrected in the above way the standard error of the difference is
1-85/./n, out of 4, giving a proportional error of 0-46/./n. For the normal law the best
estimate of the standard error has a standard error of 0-71¢//n. The probability
distribution of the range between the two extremes of n observations derived from
the normal law has been studied by E. S. Pearson (1926). His results, for n= 200,
500, and 1000, give for the ratios of the standard error of the range to its expectation
the values 0-103, 0-086, 0-077; these can be written as 1-46/./n, 1-93//n, 2:43//n,
so that the uncertainty of an estimate from the extremes would be 3 to 5 times that
for the triangular distribution. I am indebted to Mr H. O. Hartley for these values.

Thus with laws practically indistinguishable observationally from the normal law the
appropriate treatments of the data to give estimates of the parameters will differ
drastically. This fact makes it all the more necessary that we should try to find out
what the law of error really is.

The use of the normal law as an approximation, when the actual error is the resultant
of several comparable components, does not rest, therefore, on the artificial introduction
of one of those limiting processes that delight the hearts of mathematicians. It is not
necessary that the number of components should be infinite. With quite a small number
of components the law will approach the normal so closely that hundreds or thousands
of observations will be needed to detect any difference. This is the true justification
of the law in these cases, so far as it goes. But it does not justify the supposition that the
law is right at the tails, and therefore does not justify the use of the arithmetic mean.

(2) A specimen of the second type is given by the number of letters on the lines of
a page of print. Letters and spaces are not all of the same length, and their distribution
among the lines gives rise to a variation in the number that a line will hold. Such
a variation is therefore the resultant of a number of small and nearly independent
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variations of comparable magnitude, and the usual proof of the normal law is applicable
(Whittaker and Robinson 1924, p. 168; Jeffreys 19374, pp. 56-60). Many actual
errors are of this form, notably all where the data are not separate observations but
linear combinations of several observations of the same type. Such a case is provided
by Bullard’s determinations (1936) of gravity in Africa by comparison of the periods
of pendulums swung locally with others swung at the same time in Cambridge. Two
swings in each place are combined to give a mean difference; thus the error of the
comparison is the resultant of four comparable components, each probably capable
of continuous variation, and in these conditions we should expect the normal law to
hold with considerable accuracy.

The proof of the normal law in such cases rests on several approximations, and the
law cannot be asserted from it without some evidence, such as that just mentioned,
that these are valid in the particular case. The proof fails if one of the components
contributes most of the variation, the argument leading in that case back to a law
approaching the error law for that component by itself. If the number of components
is k£ the law will fail at deviations more than about o, /k, sometimes less (Jeffreys 1935,
p. 209). This is true even for the binomial law; we see that it forbids departures more
than this altogether, whereas the normal law gives a finite though small chance. The
range within these limits includes most of the chance; but, unfortunately, the principle
of the arithmetic mean does not require the truth of the normal law at deviations only
up to o./k, but at all deviations whatever, and the difference will be larger if the com-
ponents are unequal. The treatment of outlying observations must depend on a fuller
discussion of the law of error at the extremes. 7

(3) and (4) In these two types of cases there is little or no reason to expect the normal
law. There may be an overwhelming component variation that does not satisfy the
law. The distinction between them is as follows. In some types of observation we can
repeat the conditions of observation and can place limits to the variation that occurs
when the conditions, so far as we know, are the same. The variation is then called
observational error. But when we come to apply the same methods, the limits of
observational error being already known, to data containing another possible variation,
we find a much greater range. For instance, we may be able with a simple technique
to measure the stature of a man and find the results consistent to a millimetre or so;
but when we apply it to different men we may find variations of 30 cm. We then infer
systematic differences between different men. Their further treatment is a matter for
the special subject. Observational error is merely the unexplained residuum when we
have allowed for all known systematic variations. If other systematic variations are
afterwards discovered they can be allowed for, and the outstanding variation is corre-
spondingly reduced, but it never wholly disappears. Our question is, then, when we
have done all we can to avoid or eliminate systematic variations, does the remaining
variation satisfy the normal law? The most conspicuous case obviously does not satisfy
it, being the rounding off of a reading to the nearest scale interval, which gives a rect-
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LAW OF ERROR AND COMBINATION OF OBSERVATIONS 239

angular distribution for the chance of error.* To reduce the importance of this we
need cases where the observations cover several scale intervals, and the variation is
limited as far as possible to what human inaccuracy can produce. It is of no use to
consider types where most of the variation is genuine in the sense that it would be re-
peated if the observations were repeated. The existence of genuine normal variations
is not the subject of this paper, but for the special subjects where they arise; the question
is whether errors of observation satisfy the normal law, and to answer it we need cases
where these errors account for most of the variation. The conditions needed are
approached in some astronomical observations. Unfortunately they do not appear to
have been published in any suitable form. Thus Brunt (1931, p. 33) quotes a series of
residuals from Bessel, also given by Chauvenet, which appear to satisfy the law closely.
Positive and negative residuals are combined, so that asymmetry cannot be tested;
but comparison of the observed numbers and the expectations as they stand gives
x*> = 36, based on eleven groups. The whole number of observations and the standard
error have been determined to fit the data, thus removing 2 degrees of freedom. As
the data are combined without regard to sign it seems unnecessary to allow for variations
of the mean, which would only produce a second order effect on the combined numbers.
Thus we can take the effective number of degrees of freedom as 9. From Fisher’s table
we find that a smaller y2, with 9 degrees of freedom, would be expected in 7 9, of the
cases if the law was true. The agreement is therefore surprisingly good, indeed a little
too good, because it suggests that this series has been selected because it gives an
unusually good agreement with the law and that others that may have disagreed
violently with it may have been suppressed. This danger of selection makes it undesirable
to make use of published series to test the normal law, unless there is some definite reason
to believe that no suppression has taken place.

3. After some search it appeared to me that the conditions could be satisfied only
if some special device was available to magnify the inaccuracy and the error could be
found more accurately by some other method. Otherwise the rounding-off error would
be the dominant one and we should be no farther forward. Three series of suitable
data were found, which satisfied the conditions and did not appear to have been
selected. The first two were by K. Pearson and his collaborators (1902); the evidence
against selection is that the observations were made to test, not the normal law, but the
correlations between different observers and other somewhat subtle points. The normal
law was discussed, apparently, only as an afterthought when the observations had
already been made. In the first type of observation three sheets of paper were marked
each with two pinholes at the same distance apart, and three observers were asked to
bisect by eye with a pencil the line joining them. The distances were afterwards
measured carefully and the errors were found. In the second type a bright line reflected

* The same might be expected to apply to estimation to the nearest tenth, but Yule (19277) has shown
that this may be far from being the case.

Vor. CCXXXVIL. A. 31
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by a pendulum moved over a screen between two fixed marks. At a certain instant
in its passage a bell rang, and at that instant the observers divided a line with a pencil
in the same ratio as the bright line divided the interval between the fixed marks.
The records were afterwards measured and compared with one another and with an
automatic record. The two types of reading resemble the conditions in the determination
of the declination and right ascension of a star with the transit circle. Bond’s series
were given in his book (1935). An illuminated slit was covered with a ground-glass
screen and viewed with a travelling microscope slightly out of focus. The slit was kept
fixed, but the microscope was moved well outside the range of vision after each
reading, so that the settings would be as far as possit;le independent. The variation of
the readings measures the variation of the judgment about the position of the centre
of a fuzzy object. The conditions resemble those in the measurement of a spectrum line
or (apart from the shape of the object) that of a star image on a photographic plate.
Bond’s published data were grouped without regard to sign, but on request he was able
to supply the distribution with regard to sign, so that asymmetry also can be tested.
We have therefore six series of about 500 observations each and one of about 1000.

Bond’s data were given as an example of the normal law, but on examination they
showed departures from it that were clearly systematic. Pearson in every case found
a departure from the normal law, both in the sense of either excess or deficiency of
observations at the tails and of asymmetry. His methods of fitting the data and his
tests of significance for the departures are, however, somewhat defective, and a redis-
cussion is needed.

In each case Pearson fitted laws of the types associated with his name by the method
of moments. According to these laws the chance of a deviation between x and x--dx
is ydx, where y satisfies the equation

ldy _ x—a (1)
ydx  by+bx+byx?’

and the arbitrary factor is adjusted to make the integral of y through the permitted
range equal to 1. Their merits are, first, that if 4, and &, are 0 the law reduces to the
normal law about x = a; second, that they involve two more parameters than the
normal law does, and are therefore capable of being adjusted to a wider range of data;
third, that y has at most one maximum or minimum, and this condition appears to be
satisfied by errors of observation. The solutions separate into three main types and
a number of degenerate cases. If the zeros of the denominator are imaginary, the
solution is of Type IV, and may be written
¥ \m , X

yoc(1+w) exp(~«2ptan“ ij)’ (2)
if the origin is chosen suitably. If p is 0 the law reduces to the symmetrical one of
Type VII. x may have any real value.
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If the zeros are real and the admissible values of x lie between them, the law is of
Type I, which may be written

yoc(l

ot )m(l—x/JJ(Qm))P (3)
2ma?) \1+x/a./(2m)

for x between +0./(2m). If p is 0 the law becomes the symmetrical one of Type II.

If one of m-+p is negative, y is a monotonic function; if both are negative, y has a

minimum; if both are positive, it has a maximum. Neither can be —1 or less.

If the zeros are real and the admissible values of x do not lie between them, we have
two cases according as the admissible range includes a or not. Ifit does not, y is a mono-
tonic function of ¥ within the range permitted, which is from the nearer root to infinity;
if it does, there is a maximum at @, and the admissible values of x stretch from the
nearer root to infinity. These are Pearson’s Type VI. Pearson makes his classification
according to the signs of the roots of the denominator in (1) as they stand, but if they
are of opposite signs they could be made to have the same sign by simply adding
a constant to x, thus displacing the curve without altering the form or scale. His
classification therefore does not rest on invariant properties, and one based either on
the position of a with respect to the roots, or on whether the admissible values of x
lie between the roots or not, appears to be preferable.* These two cases do not arise
in the present work, in which Types I and IV (with positive indices), with their special
cases IT and VII, cover the ground.

Pearson’s method of fitting these laws was to calculate the expectations of the first
four moments and to adjust the parameters a, b,, b,, b, so that the calculated and
observed moments agreed. This method has been severely criticized by Fisher on the
ground that it does not make adequate use of the information contained in the observa-
tions, except in the particular case when the law reduces to the normal one. Itis useful
only for bell-shaped curves (those with a single maximum) and does not give the
maximum accuracy for these. ForJ-shaped curves (the monotonic ones) the extreme
observation gives more accurate information than any of the moments; for U-shaped
ones (those of Type I with both indices negative) the two extreme observations do;
the same holds for the rectangular law, mentioned above, which is a degenerate case
of Type I, constituting a transition from a bell-shaped to a U-shaped curve. For laws
of Type VII, with m=3%, the fourth moment as calculated is infinite, whereas the
calculated one is necessarily finite; consequently the method of moments with this
law will always give m > $, whatever the true value may be. In studying these series of
observations Pearson several times found values of m near 4, and it seemed possible
that the bias introduced by the method of moments in such cases might be even more
important than the increase of the random error pointed out by Fisher.

Fisher has pointed out (1922, p. 356) that for small departures from the normal law
the equation (1) is equivalent to that satisfied by the exponential of a quartic, and that

* Better than either, I think, would be to introduce the powers occurring in (3) and its analogues
directly, since their signs separate bell-shaped, U-shaped, and J-shaped curves at once.
31-2
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in these conditions the method of moments should be fully efficient. This is correct for
Type I; but for Type IV the coeflicient of the fourth power of x is negative and the
convergence of the integrals is only saved by higher powers. In any case, however, it
seems that departures from the normal law, with practicable numbers of observations,
can be established only if they are large enough for the moment series to diverge. This
point will be considered further later.

The practical difficulty of the method of maximum likelihood, in application to the
bell-shaped Pearson curves, has been the labour of calculation. A device given later
in this paper enables this to be reduced considerably, at any rate when the law is nearly
symmetrical, as in these cases. The method of maximum likelihood is practically
equivalent to the principle of inverse probability in problems of estimation (Jeffreys
19384); Fisher does not advocate it for that reason, but as I accept the principle of
inverse probability I do so.

It may be noticed that in the laws of Types I and IV we can associate x with an
additive constant, which will be the parameter of location; ¢ is the parameter of
scaling; m and p are numbers, m expressing excess or deficiency of chance at the tails
and p the asymmetry. It is necessary to associate with ¢2 a multiplier of order m in
order to keep the scale of the same order of magnitude when ¢ remains constant and
m varies; otherwise, when m tends to infinity the entire area of the curves would be
concentrated at one value of . This leads to an interesting consequence. Let m tend
to infinity, ¢ remaining finite. Then both forms tend to

x2 2px 1 2p0 \?

yocexp(*%é~~7é—gj)xexpwép(x+](‘;im>) , (4)
so that in the limit both are normal distributions about x = —2pa/./(2m). It follows
that if m is large enough, the scale of the curve (as measured, for instance, by the
distance between the inflexions) remaining finite, it will be impossible to separate the
parameter of location from p by means of any observed data. This will be true even if p
becomes large at the same time as m; indeed, if it does not become large of order m!
the displacement of the mode will tend to zero; and it must be less than m for bell-
shaped laws of Type I, otherwise # has no maximum in the permitted range. Thus we
cannot hope to detect asymmetry unless we can show that m is finite; for if m could be
infinite any possible effect of p could equally be interpreted as the effect of a permissible
change of location. Asymmetry is not worth considering unless we can first show that
there is a symmetrical departure from the normal law.

In the present cases Pearson finds for every series of observations both a symmetrical
and an antisymmetrical departure from the normal law, and his wording towards the
end of the paper, where he always speaks of the non-normal distributions as ““skew
distributions”, places the emphasis on the asymmetry.* The nearest approach to

* Any function f(x), where x may have either sign, may be expressed as the sum of an even function
Lflx) +1f(—x) and an odd one, }f(x) —%f(—~«). Ispeak of the former as the “‘symmetrical’ part and
the latter as the “antisymmetrical’ part. Where the latter is not zero I call the function “asymmetrical”’.
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a separate test for asymmetry, however, is provided by the ratio ./f; = lis/1s, where
U and g, are the second and third moments about the mean. The test for the finiteness
of m is based on the ratio f, = u, /43, y, being the fourth moment. The expectations of
JB, and B, on the normal law are 0 and 3. Pearson finds their mean square random
variations, still assuming the normal law; if the observed values exceed these substan-
tially both are asserted as genuine, so that m is taken as finite and p as different from
zero. It would presumably be legitimate to assert one of these propositions on this
ground, but not both, unless it is also shown that the first departure asserted will
not explain the second. This danger of introducing too many parameters at a time is
very serious. In this case f§, is found to exceed 3 in 4 cases out of 6, indicating a law with
an excess of observations at the tails in comparison with the normal law. The actual
number is small, but it is just these observations that contribute most of the third moment.
The tails could not contribute much if the normal law was true, but given that there
are more outlying observations than the normal law indicates, a new random error
comes in. With a symmetrical departure that increases their frequency, there is a
sampling error in the difference of the numbers of outlying observations on the two sides.
This hardly arises with the normal law, since the whole expectation in these ranges is
small; but with an increase in the total expectation the expectation of the sampling
error rises too, and the standard error of ,/f; as found from the normal law ceases to
be applicable. It therefore requires to be shown, before we can assert skewness, that
Jf, or some other standard of skewness is not explicable as due to a sampling error in
the outlying observations, rendered possible by the existence of a symmetrical departure.
The values of \/#, and f,, indeed, answer the same question: are the data reasonably
consistent with the normal law? They do not, however, entitle us to introduce two
new parameters, until it has been shown that one, expressing only a symmetrical depar-
ture from the normal, will not suffice to explain both departures. m must in any case
be considered before p, because, as shown above, p is totally indeterminate if m is
infinite.

A special complication was shown by Pearson by taking the means of groups of
about 25 consecutive observations, which were found to vary more than they should if
all the observations were independent (unless indeed the law of error was of Type IV
or VII with m near 1). They are no steadier than the means of 2 to 15 independent
observations should be. Such a correlation between consecutive observations suggests
that all estimates of uncertainty based on the hypothesis of independence will be too
low; it turns out, further, that it may explain a large part of the variation of m
between different series and possibly also the asymmetry. Consequently I have
not thought it worth while to try to estimate the asymmetry accurately. It may be
suggested that the discussion should be limited to cases where the condition of inde-
pendence is more accurately satisfied, but I know of no evidence that there are any
such cases. The existence of systematic personal errors is well known to observers,
and astronomers, in particular, achieve their high standards of accuracy by arranging
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their work so that these will cancel as far as possible. The results are more nearly
independent, but they are differences of observed values, and their law of error will
be that of the resultant of several errors and should approach the normal more closely
than that of an individual observation. This will make the departure from normal more
difficult to estimate, and we should still have the problem of inferring the law for one
observation from that of a difference.

In testing the normal law Pearson began by finding a mean and a standard deviation,
the mean being interpreted as personal equation; the expectations by ranges according
to the normal law with these parameters were compared with the observed ones by
the y2 test. The respective probabilities of larger values of y2, given the normal law, were
given as 065, 0-28, 0-21 for the absolute judgments in the bisection series, as 0-0006,
10719 and 0-29 for the bright-line series. Four of these six values would not be taken
as evidence against the normal law by most statisticians; but it is not clear how the
observations have been grouped to find 2. The numbers of groups quoted are such that
in several cases it would be impossible for the expectations in all of them to have reached
5, and Pearson cannot have applied the testin the way that he afterwards recommended,
in which the smaller expectations are combined so that the total in each group is at
least 5. The later rule has the advantage that the probability of the contribution to y?
from each group is more nearly normally distributed, and therefore that the probability
of a given total y2, according to the hypothesis to be tested, will follow the usual rule
more closely. It has the disadvantage, illustrated by the comparison of the binomial
and normal laws that has been given above, that if the expectation in a range, on the
hypothesis tested, is small enough, that range may never appear in the test except in
combination with an adjacent one, where the systematic departure has the opposite
sign. Thus if only observations in a given range are sufficiently unlikely on the hypo-
thesis their presence may fail to be taken as evidence against the hypothesis. This is
a serious defect of the test, and was possibly avoided, at some cost, by the earlier form,
which permitted groups with smaller expectations. I consider, however, that the y*
test by itself, applied to a large number of groups, is unsatisfactory because the random
error of ¥2 is so large that a genuine systematic departure may contribute less than the
random error of ¥2 when it would be obvious if tested by itself. The use of y?, in my
opinion, is simply that the distribution of the larger contributions to it may suggest
what particular systematic departures, if any, are worth special attention; these depar-
tures, however, can be asserted only when a test specifically adapted to them has been
applied. If groups can be combined in such a way that only one new parameter could
be determined from them, the value of y2 for this grouping is an estimate of the square
of the ratio of that parameter to its standard error, and when the expectations in the
groups are all large this is a very efficient method. It is, however, inferior to a direct
estimate of the parameter and its standard error by the method of maximum likelihood,
though the difference is small when the trial distribution is nearly uniform.

It may be worth while to call attention to one type of spurious increase of y2. If the


http://rsta.royalsocietypublishing.org/

a
A Y
A \

/%

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
' \
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LAW OF ERROR AND COMBINATION OF OBSERVATIONS 245

observations are measures grouped by unit ranges, a decision must be made about where
to put a reading ending in 0-5. Usually a convention is made to round off always to
the nearest even integer to avoid systematic error in the mean. Thus values, really from
145 to 2-55, are recorded as 2, and the expectations in the even and odd ranges are
respectively raised and lowered by 10 9. Thus this convention makes a contribution
to x% equal to

0-1m,)?

Z( = 0-012m,,

.
which is not negligible if there are some hundreds of observations. If several ranges
are taken together, these systematic changes cancel and there is no trouble.

4. Tests by grouping. As a standard of comparison, I first took the normal law with
the same mean and second moment. In comparison with this law, a Type VII one is
higher at the mode and at the tails, lower on the flanks. The opposite is true for Type II.
It appeared, therefore, that a test of a symmetrical departure could be obtained by
comparing the whole numbers of observations in the ranges where the departure

suggested is positive or negative with their expectations according to the normal law.
The law of Type VII

1) 2 —m
'~ Tome <m—(§>! <:n>'—%>%(l+ 17 W
has the same second moment as the normal law
1 x?
1= Jary o o 200 ®)
and to order m~1 it is equivalent to
yzj(;ﬂ—}{l +$<3—6§~Z+§:~)} exp(—%;). (3)

The addition needed to express the departure from the normal law along the Type VII
series is therefore given by a Hermite function, with a coefficient proportional to m~!.

It vanishes at
x/c =4-0-742 and 42-335. (4)

For comparison we may take the large departure given by m = §. With this value
the expectation of the fourth moment is infinite, and it would be impossible to determine
m by the method of moments at all. Yet even then the values of y according to (1) and (2)
agree at x/o = 0-68 and 2-64, which are not very different from the points of agreement
for small departures. Itis only at large deviations that we need consider the departure
of the change from proportionality to m~!. The same is easily seen to be true for
departures of Type II.

A test of significance for a symmetrical departure could therefore be made by com-
paring observation and expectation in ranges separated by the points of agreement.
But if we do this we lose accuracy, and it is better to omit the groups near the zeros of
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the departure and use only ranges about the extreme departures. In other cases it
has been found (Jeffreys 19384) that efficiencies of about 90 9, can be got by using
ranges that include about £ of the expectation. Hence for the intermediate ranges we
should sacrifice § of the total expectation at each end, and for the terminal ones } of
it at the beginning. Now

erf0-742//2 = 0-5419;  erf2-335//2 — 0-9804;
and subdividing the ranges as indicated we find that we should use ranges given by
X|o = -0-470, --0-869 to 4-1:681, 42480 to -+ co.

We denote the central range by the figure 0, the two side ones by 4-1, and the two tail
ones by 42. Since a symmetrical departure would not affect 0, —0_, or O,—O_,, our
data will be 0,, 0,+0_,, and O,+0_,. The total number of observations and the
standard error having been found as for the normal law, we have 1 degree of freedom
left to estimate m, and the evidence about m will be tested by the contribution to y?
from these three sets.

For a small antisymmetrical departure, on which a symmetrical one will always be
superposed, the additional terms needed, if the expectation of the mean is to be
unaltered, will be proportional to the Hermite function

gox) = (22 ) exp( 1 %), Q

which vanishes at x/¢ = 0 and -|-,/3. The ranges to retain are as follows:

Range
number x/o
-2 —ow  to —1:915
-1 —1-185 to —0-193
1 " +0-193 to +1-185
2 +1-915 to +

Given the normal law these would suffice to estimate the number of observations, the
mean and the standard error, leaving apparently 1 degree of freedom to test asymmetry.
But we have already seen that if there is no evidence of a symmetrical departure there
cannot be any for asymmetry; and y? found from these groups, in comparison with
the normal law, would contain a contribution from the symmetrical departure. It
would therefore always be illusory. On the other hand, if 7 is finite the expectations
in these ranges will always be equal in pairs for the symmetrical laws; an asymmetry
will be shown if, when we have adjusted the mean, the signs of 0,—0_, and 0, 0_,
are opposite and their magnitudes significant. The standard of comparison, however,
will not be the expectation according to the normal law, since these types imply
different values for O_,+ 0,, and the differences may be considerable. With a suitably
chosen asymmetry it will be possible to fit all four groups without altering the mean;
hence the number of degrees of freedom is 1 in comparison with a symmetrical law,
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the latter being adjusted to the observations. Then according to such a law the expec-
tation of 0, would be 1(0_,+ 0,) and its residual £(0,— O_,), with analogous relations;
and the contribution to y? from asymmetry is

2{3(0;—0_,)}" | 2{3(0,—~0.)}* _(0,—0_,)* | (0,—0_,)?

— . 6
10,705,) T 30,10, ~ 0,40, 0,10, (6)

If we had the individual observations, this evaluation would be straightforward.
Actually, however, the observations are grouped in ranges of about % of the standard
error. The result is that if we retain groups up to and including the suggested points
of separation adjacent ranges will often be retained and some observations put into the
wrong side of the scale. It becomes necessary, therefore, to make it an absolute rule to
reject any range where the suggested correction term changes sign. The mean, again,
does not come at the end or the mid-point of a range of the table. The extended ranges
used for the tests are therefore asymmetrically situated and expectations for them
according to any symmetrical law are not symmetrical. This gives no trouble in testing
a symmetrical departure, since we have the expectations according to the normal
law for the actual ranges used. But for the antisymmetrical one there is a serious com-
plication, since the expectations of 0, and O_, on the symmetrical law are rendered
unequal by this adjustment, and we cannot estimate their difference until m has been
evaluated. But since the departure from normality is small we can find C, and C_,, the
expectations according to the normal law, and suppose that these are still approximately
correct. Then we can allow for the difficulty of asymmetrical grouping by replacing
0,—0_, by 0,—C,—0_,+C_, before evaluating the contribution to y2 from possible
asymmetry.

In this way the contributions to y? from symmetrical and antisymmetrical departures
will be determined and tested for significance separately, with possibly only a trifling
loss of accuracy. If desired a more accurate solution can be constructed later with
a finer grouping, but what we want to know first is whether there is a prima facie case
for asserting the existence of the departures at all.

4-1. In the first place the means and standard deviations for Pearson’s six series
were found; the observed numbers were then compared with expectations according
to the normal law by the x? test, terminal groups being combined so as to keep an
expectation in every range of at least 5. The results are as follows:

Bisection: 1) Mean —0-01230, 0 = 0-02455. Observer, Dr Alice Lee.
2) Mean +0-00495, 0 = 0-:03065. Observer, Professor Pearson.

3) Mean +0-00377, 0 = 0-02625. Observer, Mr Yule.

2) Mean —4-5993, o = 4-6915. Observer, Dr MacDonell.

(
(2)
(3)
Bright line: (1) Mean +0-2909, ¢ = 4:7566. Observer, Professor Pearson.
(2)
(3) Mean —1-8054, o = 7-2859. Observer, Dr Lee.

Vor. CCXXXVII. A. 32
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For convenience I subtracted 0-005 from all the bright line readings and multiplied
by 4 before making my determinations. The results are in agreement with Pearson’s
grouped ones (1902, p. 252). Hisresults (grouped) for the bisection experiments all agree
numerically, but all the means are given with the opposite sign. (His sign convention
for these changes during the paper.) The detailed comparisons are as follows:

BISECTION SERIES (ALL READINGS MULTIPLIED BY 100)

1) ‘ @

Obs Calc. o0-C X2 Obs Calc. 0-C X2
— 9 1 0-58 + 042) 0 (0-84) \
_ 8 4 1-91 + 2000 419 1 1-44 044 047
_ 7 85 53 + 32 | 3 3-35 —0-35)
—6 12 125 ~ 05 002 11 7-0 +4-0 2.28
—5 135 25-2 —11-7 544 14-5 13-2 +1-3 0-13
—4 45 43-0 + 20 0-09 21-5 292 —07 0-02
~3 6l 624 ~ 14 0-03 30 341 —41 0-49
~2 78 76-8 — 08 0-01 47 467 +0-3 0-00
~ 1 905 80-4 +10-1 1-27 515 57-4 —59 0-61
0 45 70-1 + 44 0-28 72 64-0 +8:0 1-00
+1 50 53-8 ~ 38 0-27 655 63-8 147 0-04
2 305 344 — 39 0-45 53 57-6 —46 0-37
3 205 187 + 28 0-42 50-5 466 +39 0-33
4 7 865 ~ 165 0-31 285 340 —55 0-89
5 3 335 - 0-35} 063 27 22.2 4.8 1-04
6 2 1-12 + 0-88 135 130 405 0-02
7 0 75 7:0 —05 0-04
8 0 3a 0 3.32 332
9 0 0-41 1 1-42 —042
10 0 0 0-55 —0-55 1-18
+11 0 2 0-19 +1-81
(0-08)
89
(3)
Obs Calc. 0-C x?
(0-67) \
7 1 153 ¢ — 053- 077
—6 75 410 + 340
_5 9-5 95 00 0-00
4 22 19-2 + 28 0-41
3 40-5 33-3 + 72 1-56
_2 435 50-3 ~ 68 092
-1 51 66-8 —158 3-55
0 685 747 — 62 0-52
+1 75 73-4 + 16 003
2 70-5 627 + T8 0-97
3 61 461 +14°9 4-82
4 255 29-5 ~ 40 0-54
5 135 16-3 — 2.8 0-48
6 10 7.8 + 22 0-62
+7 1 3.22 — 229
D) } 312
183

O =observed; C=calculated.
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BRIGHT LINE SERIES
(1)
S. Calc. o-C 2 Obs. Calc. 0o-C X2
] (0-01) + 099 0
g 0
| 1 000 +1:0
0-04 + 096 0
0-20 ~ 020 0-50 0
0-78 + 0-22 0 0-01 —0-01 077
2-56 + 3-44 0 0-08 —0-08
7-1 - 31 0 0-38 —0-38
16-6 — 46 1-27 0 1-39 —1-39
32-4 —104 3:35 3 4-33 —1-33
535 + 35 0-28 8 11-1 —31 0-87
73:6 — 2:6 0-09 31 24-0 +7-0 2-03
85-4 +11-6 1-58 35 43-5 —85 1-67
835 + 15 0-03 73 65-4 +7-6 0-88
681 + 09 0-01 76 82-8 —6-8 0-56
46-9 + 91 1-77 96 87:2 +8-8 0-89
27-2 — 42 0-65 79 771 +19 0-05
13-2 — 62 291 60 56-7 +3-3 0-19
54 — 14 ) 30 35-0 —-50 0-72
1-90 — 0-90 17 18-1 —-11 0-07
0-53 + 0-47 0-12 5 7-78 —2-78
0-13 — 0-13 3 2-81 +0-19
0-03 + 097 1 0-84 +0-16
(0-01) — 001 0 0-21 —0-21 0-24
Ty 0 0-04 —0-04
1 0-00 +1-00
8-9
3)
Obs Calc. o-C x?
(0-04)
+25 1 0-07 + 093
23 0 0-18 — 018
21 0 0-44 — 044 4-28
19 0 0-99 — 099
17 0 2-05 - 2:05
15 1 4-04 — 304
13 12 7-27 + 473 3:07
11 19 12-2 + 6-8 378
9 18 19-0 - 10 0-05
7 26 27-6 — 16 0-09
5 42 36-7 + 53 0-77
3 48 45-6 + 24 0-12
+ 1 44 52-6 — 86 1-40
-1 48 56-3 - 83 1-22
- 3 46 55-8 - 98 1-72
- 5 60 515 + 85 1-40
-7 . 42 44-0 — 20 0-09
-9 36 349 + 11 0-04
—11 36 257 +10-3 4-14
—13 20 17-6 + 24 0-33
—15 12 11-1 + 09 0-08
—-17 5 6-51 — 151 0-35
—-19 2 3:55 — 1'55‘[
—-21 1 1-79 — 079 2-11
(1-45) |
250

32-2
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250 HAROLD JEFFREYS ON THE

The respective values of y2, the numbers of groups (reduced by 3 to convert to degrees
of freedom) and the corresponding values of P(y?) from Fisher’s table are as follows.
Against them I give Pearson’s values:

H.]J. K.P.

x? n' P v2 n' P

Bisection 1 13-4 10 0-22 13-3 14 0-65

2 89 13 0-78 22-0 17 0-28

3 183 11 0-08 20-3 14 0-21
Bright line 1 12:6 9 0-18 42-8 15 0-0006
2 89 9 0-44 83-5 13 0-0000
3 250 15 0-:05 21-8 17 0-2933

Comparing the determinations of P we see that there are great differences, presumably
owing to the fact that I have grouped more of the regions with small expectations
together. None of my values of P would usually be taken as decisive evidence against
the law tested. Pearson, for the second ““Bright-line”’ series, remarks that the P would
differ from zero only in the tenth place; I get a perfectly normal value. He also gets a
value of 2 for the first bright-line series that would imply rejection of the hypothesis;
mine is within the expectation and its standard error. The reason is presumably that
these series contain outlying observations at distances where deviations would be
practically impossible according to the normal law. Pearson’s earlier practice makes
allowance for their improbability ; his later one, which I have adopted here, lumps them
with the larger expectations and their importance is disguised. It appears that the
earlier method may be the better. But what the comparison really shows is that when
the expectation becomes very small in some ranges the y? test, in any form, is so
sensitive to the arbitrary method of grouping that it is practically useless. The only
suitable method is one that tests the suggested departures separately. (My contingency
test (1937¢) is applicable however small the expectations are.)

The bisection series consist of 500 observations each, the bright-line ones of 519.
Bond’s series contains 1026. The unit is 0-01 mm. displacement from an arbitrary
zero. Grouped without regard to sign, as in his original summary, they are as follows.
The standard error is 4-601. Residuals from 1-0 to 2:0 and —2-0 to —1-0 are grouped
together and entered as 1-5. Comparison with the calculated expectations gives
y% = 16-8, from 13 groups. A slight error in the mean would hardly affect the ex-
pectations grouped without regard to sign, and we may take the number of degrees of
freedom as11. From Fisher’s table (1936), P(y?) = 0-12, whichisnormal. Yetinspection
of the signs shows a variation of the most systematic kind possible. If the true law was
of Type VII and we did our best to fit a normal law to the data, then we should expect
the signs of the O — C values to show just the distribution that they do, and there are
no exceptions whatever. The signs as they stand would indeed suggest a Type VII
law, differing from the normal by so much that the difference in every range is more
than the sampling error; yet the random error of ¥? introduced by using numerous
ranges reduces the sensitivity so much that the whole matter is left in doubt.
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Error Obs. Calc. 0o-C §? Calc. (2) 0-C(2) X2
0-5 184 176-5 + 75 0:32 186-1 — 21 0:02
15 178 1684 + 96 0-55 176-2 + 18 0-02
2:5 54 1535 + 05 0-00 1579 - 39 0-10
35 138 133-1 + 49 0-18 133-8 + 42 0-13
4-5 122 110-3 +11-7 1-24 107-4 +14-6 1-98
55 69 87-2 —18:2 377 81-5 —125 1-92
6:5 60 65-7 — 57 0-50 587 + 1.3 0-28
75 33 47-3 —14-3 4-32 399 — 69 119
85 29 32-3 - 33 0:34 25-7 + 33 0-42
9:5 16 21-3 — 53 1-32 156 + 04 0-00
10-5 19 13-2 + 58 2-55 9:0 +10-0
115 9 79 + 11 0-15 5-0 + 40
12:5 5 4-5 + 05 26 + 24
135 5 2:5 + 25 1-2 + 3-8
14-5 2 1:25 + 075 1:51 0-6 + 14
155 1 0-64 + 0-36 0-25 + 075
165 1 0-29 + 071 0-11 + 0-89
17-5 1 0-13 + 0-87 0-04 + 0-96

16-75 6-:06

It has already been seen that the theoretical arguments that lead to the normal law
suggest that it should break down at a moderate multiple of the standard error. If the
true law was a smoothed binomial one, there would be a deficiency at the tails. Most
series of observational errors, however, show an excess at the tails, as in this series.
It is interesting, therefore, to see whether a normal law would fit better if it was deter-
mined only from the residuals up to about 4-2¢. This can be done approximately by
considering frequencies. There are 654 observations up to +4, 983 to 4-10. These

give the equation

erf4h 654 '
orf105 — 9gg — 6654

to determine the precision constant. Then
h=01662; o= 4254(140-027).

The values given as Calc.(2) are 1001-8 4 erfkx, with this value of 4. They give y2 = 6-06
for 8 degrees of freedom, from the values up to +10. This is perfectly satisfactory and
would leave no room for a significant systematic departure within this range. The normal
law therefore appears to hold up to about 2-5¢. Beyond that range, however, it breaks
down utterly. Beyond +13-0 there are ten observations; the normal law would
predict 2-2. ;

4-2. Tests by extended groups. The ranges used in testing the first bright-line series
for a symmetrical departure from the normal law are as follows:

Range
covered Obs. Calc. o-C
—2 + oo to +13 9 3-59 + 541
—1 + 7to + 5 79 85-9 — 69
0 — lto+ 1 182 168-9 +13-1
+1 — 5to — 7 79 74-1 + 49
+2 —13 to — o0 3 2-60 + 04
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Thus the combinations to be used are:

—2and +2
—1and +1
0

Calc.
6:19

160-0

168-9

For an antisymmetrical departure we have:

-2
-1
+1
+2

Range
covered

+ o0 to +11
+5 to + 3
—3 to — 5
—9 to —w

(0=C)y—(0—C)_,= —95:
(0—C),—(0—C)_ = +91:

Obs.
13
128
125
14

x2=3-63.

Calc.
10-69
127-1
115-0
21-2
0,+0_,= 27
0,+0_,=253

The second bright-line series gives for the symmetrical departure:

-2
-1

0
+1
+2

Range
covered

+ oo to
+ 3 to
— 3to
—11 to
—17 to

+ 7
+ 1
-7
—13

— o0

Obs. Calc.
4 6-20
66 67-5
251 247-1
47 53-1
5 3-90

and for the antisymmetrical one:

-2
-1

+2

-2
-1
+1
+2

Range
covered

+ oo to
+11 to
+ 1 to
— 9to
—21 to

+17
+ 5
-5
—15

— o0

Obs.

1 3-76
105 95-5
198 216-2
104

1 2-22

Range
covered
+ ooto + b
+ 1lto — 3
— 7Tto —11
—15to —w

o-C
—2-20
—1-5
+39
—6-1
+1-10

Obs.

12
184
169

10

x2=0-77.

—2and +2
—1and +1
0

Calc.
17-3
191-7
168-8
11-7

Bright line (3). Symmetrical departure

Calc.

89-3

0-C
— 276
+ 95
~18-2
+14.7
~ 122

—2and +2
—1and +1

0

Antisymmetrical departure

Range
covered
+ oo to +13
+ 7to + 1
— 3to —11
—17 to —

Obs.

14
160
220

8

y2=1-12.

Calc.
15-07

162-5

211-9
13-30

2
545
0-02
1-01
6-48
o-C
+ 2:31
+ 09
+10:0
— 72
Calc. o-C
10-1 —1-1
120-6 —7-6
2471 +3:9
o-C
—-53
—79
+0-2
—17
Calc. 0-C
5-98 — 398
184-8 +24-2
198 —182
o-C
—1-07
—9.5
+ 81
—5-30

0-12
0-48
0-06

0-66

2-65
317
153

7-35
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Busection (1). Symmetrical departure

Range

covered Obs. Calc. o-C
—oto —8 5 268  + 2:32 ) Calc. 0-¢C¢ X
~5 to —4 585 68-2 — 97 —2and +2 4.21 + 279 1-85
-2 to O 241-0 227-3 +13-7 —1and +1 121-3 —10-8 0-96
+2 to +3 52 53-1 - 11 0 227-3 +13-7 0-83
+6 to +oo 2 1-53 + 04 Q.6

7 3-64

Antisymmetrical departure

Range :

covered Obs. Calc. 0-C
-2 — oo to —6 255 20-48 +5-0
-1 —4 to —2 182 182:2 —02
+1 0 to +2 155 158-3 —33
+2 +4 to +o0 12 13-12 —1-12

y2=1-03.

Busection (2). Symmetrical departure

Range
covered Obs. Calc. o-C
~wto —8 1 228  —1.28 Cale.  0-C ¥
-5 to —3 66 69-5 —35 —2and +2 452 —052 006
~1 to +2 242 2428 —08 —land +1 1387 —37 0-10
+4 to +6 69 69-2 —02 0 2428 —-08 0-00
+9 to + oo 3 2:24  +0-76 0l6
Antisymmetrical departure
Range
covered Obs. Calc. o-C
-2 —o to —6 15 12-63 +2-37
-1 —3 to —1 128-5 138-2 —-97
+1 +2 to +4 132 138-2 —6-2
+2 +7 to + o 10-5 12-56 —2-06
¥2=0-82.
Bisection (3). Symmetrical departure
Range
covered Obs. Calc. o-C Calc. o-C X2
—oo to —7 1 2-20 — 120 —2and +2 7-12 — 512 3:68
—4 to —3 62-5 525 +10-0 —1land +1 144-4 +18-1 2:27
0 to +1 143-5 148-1 — 46 0 148-1 — 46 0-14
+3 to +5 100 919  + 81 509
+7 to + 1 4-92 — 392
Antisymmetrical departure
Range
covered Obs. Calc. o-C
-2 —o to —5 - 18 15-8 + 22
—1 ~3 to —1 135 150-4 ~154
+1 +2 to +4 157 1383 +167
+2 +6 to +oo 11 1272 - 17

x2=4-06.
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254 HAROLD JEFFREYS ON THE

On inspection we see that out of six series of observations the contributions to y?
from the symmetrical departure are, in turn, 6-5, 0-7, 7-4, 3-6, 0-2, and 6-1. Four
exceed their expectation, unity, three of them considerably. There can be little doubt
that these values cannot be attributed to random variation. But we may notice that
the range of random variation of y2, as found directly from a series with 11 degrees of
freedom, would be approximately represented by a standard error of 4-7. This would
be quite sufficient to obscure completely systematic contributions of the amounts
found. Out of the four that give departures that are probably genuine, two express
excesses and two deficiencies of observations at the tails in comparison with the normal
law, corresponding to laws of Types VII and II. This was unexpected, since the usual
tendency of errors of observation is usually believed to be towards excesses at the
tails.

To put the matter in the way recommended by Fisher (1936, pp. 104—17), we could
combine the six determinations and regard them as a contribution to y? from 6 degrees
of freedom, its amount being 24-5. This is far beyond his 1 9 limit, which comes at
x? = 16-8.

The total contribution from the antisymmetrical departures is 11-43, which would
give P = 0-08, and is only a shade beyond the standard error of the expected y2. It
would not be accepted as significant by any test.

On the whole, therefore, we have evidence for departures from the normal law, but
no evidence that this departure is asymmetrical; or rather, perhaps, we may say that
the whole of the asymmetry is summarized adequately by the personal equation, which
displaces each distribution bodily in comparison with the true value. The abnormalities
are not in the same sense for the same observer in both types of observation. Dr Lee’s
observations deviate in the sense of Type VII for the bisection series, II for the bright-
line series; Pearson’s are normal for the bisections and Type VII for the bright-line
observations. Also each set includes one apparently normal series, one of Type II,
and one of Type VII. There is no basis, therefore, for any generalization about the type
of departure.

Bond’s data, as published, do not suffice to test for an antisymmetrical departure.
To test for a symmetrical one we take range 0 from 0 to 3, 1 from 4 to 8, and 2 from
11 to +oo. The totals in these give y* = 5-58, P = 0-018, the departure at the tails
being an excess. But since this series was the longest homogeneous series of observations
that I could find, subject to the condition that human inaccuracy would be expected
to be the dominant source of error, I asked Dr Bond for his original readings so that
asymmetry could be tested. He kindly supplied these and gave much valuable help in
their discussion. The mean was not at zero, but at - 0-18. In the table P and N are the
numbers of positive and negative residuals of equal magnitude; the column headed
““mean” gives the expected effect on P— N, on the hypothesis of the normal law, due
to the fact that the mean is not at zero. This is subtracted from P— N to give differences
analogous to the (0,—C,)—(0_,—C_,) used in discussing Pearson’s data.
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P—N
P N P—-N Mean (corrected)

0-5 91 93 - 2 +0-7 — 29
15 76 102 —26 20 —28-0
2:5 67 87 —20 31 —23-1
35 62 76 —14 4-0 —18:0
4-5 65 57 + 8 4-2 + 3-8
55 39 30 + 9 4-1 + 49
65 32 28 + 4 34 + 0-6
7-5 22 11 +11 3-0 + 80
85 17 12 + 5 2:5 + 25
95 10 6 + 4 1-7 + 23
10-5 9 10 -1 1-2 — 22
11-5 4 5 -1 0-8 — 18
12:5 3 2 + 1 0:5 + 0-5
135 4 1 + 3 0-3 + 27
14-5 0 2 - 2 +0-1 — 21
15-5 1 0 + 1 0-0 + 1-0
16-5 1 0 + 1 0-0 + 1-0
17-5 1 0 + 1 0-0 + 1.0

The ranges used in testing asymmetry are: —1 and +1, 1-5 to 55 inclusive; —2 and
+2, 9-5 to 17-5 inclusive. For these we find

P-N
(corrected) P+ N X2
+1 —60-4 845 4-31
+2 + 24 59 0-10

4-41

Thus y? is rather large. It is clear on inspection, however, that there would be no
justification for inferring that the distribution is of Pearson’s Type IV. This would give
practically a normal law at deviations up to over the standard error, and the asymmetry
would be shown at the tails. Here much the greatest part of y? comes from the first
four groups on each side of the origin, covering residuals up to less than the standard
error. There is no evidence for asymmetry in the tails at all. A good fit could therefore
be obtained only by going outside the range of the Pearson functions, and it does not
seem worth while to do so on the strength of a value of y2 that would be doubtfully
significant in any case. Mr Hey’s solution for Type VII gave y? = 27-37 on 22 degrees
of freedom, P = 0-24; for Type IV, 25:62 on 22 degrees of freedom, P = 0-27.

Yet these departures at small residuals are larger than we should normally expect, and
I enquired of Bond whether he could suggest any explanation. If the observations
were not strictly independent, as, for instance, if the microscope was not moved far
enough away after each reading, there might be a tendency to repeat readings on
account of backlash in the screw. It appeared thatsuch dangers had been foreseen and
that all precautions had been taken. He said, however, that before he had completed
the series another man had interfered with the apparatus and altered the focusing,
which Bond had restored to its original state. This might have been done imperfectly,
so that the data might really refer to two superposed normal laws with different modes
and standard errors. Such superposition, even if there was no change of the mode,

Vor. CCXXXVIIL. A. 33
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would give the excess of observations at the tails characteristic of Type VII, and we
might be left with no evidence against the normal law.* Mr G. B. Hey, who helped
me with the arithmetic in this part of the work, tested this by fitting the sum of two
normal laws to the data; but he found that if they were to account for the hump, their
parameters must differ so widely that it seemed incredible that such a change could
have occurred without Bond’s having noticed it. Accordingly I think that even if
these observations are not strictly a homogeneous series they depart from one so slightly
that we may accept the inference that there is a symmetrical departure from the
normal law but probably not an asymmetrical one. In any case there would be no
justification for preferring Type IV to Type VII, since the former would make little
difference in the range where there seems to be a possible departure from the latter.

5. The fitting of Pearson curves of Types I, II, IV, and VII. Most of the difficulty of
fitting Pearson curves by the method of maximum likelihood appears to arise from the
fact that in their usual form they are stated in terms of parameters whose errors are not
independent. We have seen that if the scale of a law of Type II or VII is to remain of
the same order of magnitude for all values of m, a factor of order m must be associated
with ¢2. But if this factor is simply m, the effect of increasing ¢ is to lower the curve at
small deviations and raise it at large ones (the outside factor being adjusted to make the
area unity). But the effect of reducing m for Type II, or increasing it for Type VII,
is qualitatively just the same; the departure only changes sign at a different deviation.
The determination of m requires that these two effects, which are strongly correlated,
must be separated, and consequently a large number of figures must be kept in the
computations. Solution would be expected to become much more expeditious if we
could state the laws in such a way that the effects of small variations in the unknowns
are nearly orthogonal. It appears that this can be done by modifying the parameters
of location and scaling. In Type I, for instance, we may write

x—a)\m(1—(x—a)loJ(2M)\?

Y (IM(QMU)z ) (1+ Ex~a;§ojg2M§) ’ (1)
where M will be a function of m and p, tending to m when m is large; a is a parameter of
location. Suppose that wehaveasetof trial values of @, 7, m, and p and denote departures
from these by accents. Then the effects of changes of m and ¢ on y are symmetrical,
those of changes of ¢ and p antisymmetrical. Hence, apart from random errors, the
logarithm of the likelihood will contain no terms in a’c’, a’'m’, p'c’, or p'm’. But if
M = m, there will be terms in m’¢’, and there will always be terms in a’p’. But if we
choose M suitably it may be possible to make the terms in dM/dm cancel those in
d(log L)/dm that involve ¢’, and log L will contain no terms in m’¢’. Similarly if we put

a—bikeJ(2M), (2)

* Except, of course, the type of evidence relating to the survival value of the Bread-and-Butter-Fly.
“But that must happen very often”, Alice remarked thoughtfully. ““It always happens”, said the
Gnat. '
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where £ is a suitable odd function of p, and write down the equations of maximum
likelihood for 4 and p instead of for @ and p, it may be possible to choose £ so that there
will be no terms in 4p” in log L, and therefore no term in 4’ in the equation for 4" and no
term in 4’ in the equation for p’. Then the equations of maximum likelihood will
determine all of &', ¢/, m" and p’ separately, and the errors of these estimates will be
independent. Thus even though no strictly sufficient statistics exist a small change in
any of the unknowns will introduce only a second order change in the estimate of any
other, and it may be possible to approximate rapidly by iteration. It is not possible
to assign M and £ in advance so that the product terms will cancel exactly for all
distributions of observations, but it is possible to assign them so that the expectations
of these terms, on the hypothesis that the law used is correct, will vanish. The expecta-

tion of - 7 (log L), for instance, will be the expectation of X9%logy/dodm from the

dadm
various observed values of x, and therefore is
d*logy
nf Y75 dodm dz,

where 7 is the number of observations. If we can choose M to make this integral vanish
for all values of m and ¢ we can satisfy our conditions. The product terms in log L,
as found from any actual set of observations, will represent only random error and may
be omitted; they will be of order nt and will give only errors of order n~! in the
estimates.

Consider first the symmetrical law of Type II, which we take in the form

- il e

The outside factors contribute nothing to d21log y/dodm; we find

P ey — (x—a)? _ 2mM'(x—a)? .
Imda? °8Y T oM 2 (x—a)? BMo?— (x—a)B®’ (4)
d2logy 1 (1 M mti
and Y omaa? 202{m Mm—._l} (5)
M’ m—1 3 2
Hence M~ mm+L) m+i m (6)

M = (m-+ 1)), (™)

if our conditions are to be satisfied. The arbitrary factor can be absorbed into o.
The integral diverges at the limits if m<(1, and the method fails. But for m =1 the
curve cuts the axis of x at a finite angle (being then a parabola); for 0<m<1 it cuts it

normally; for m = 0 it is rectangular; and for —1 <m<01itisU-shaped. Belowm = —1
the parameters cannot be adjusted to give the curve a finite area. For all values from
33-2
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m = —1 to 1 the extreme observations give estimates whose errors decrease with n
more rapidly than %, and it is best then to introduce the termini directly as unknowns.
The present method therefore covers all cases where accuracy of order 7% is as much
as is attainable.

The appropriate form for Type II is therefore

y*{QW(er%)}%(m—l)!U{I“Q?mi%;‘,ﬁ : (8)

It remains significant down to m = 0, when the outside factor is 0 and the permitted
range is infinite. The permitted range, for given ¢, is a minimum for m = 1, the para-
bolic law, which is the extreme of the range where this adjustment is useful.

For Type VII we may take similarly

_ (m=D! (x—a)’ ™
y= (271Mﬁ(m~%)!0{1+ oMo } (%)
0? _ (x—a)? 2mM’ (x—a)?
Then 0m00210gy - 2M04+02(x~a)2w{2M02—|—(x—a)z}z' (10)
To perform the integration we make the substitution
(x—a)*
2M0‘2+(x—a)2qz’ (11)
9%lo 1 (1 Mm—}%
and find gt %= gt M 1) (12)
M m+1 3 2
whence M mn—1) ~m1 " w (13)
M = (m—%)3m?. (14)
We therefore take the law in the form
B m! m2(x—a)? ™™
S e el (T I I VT e

The integral in (12) always converges for m> %, and therefore over the whole range
of the type.
A similar treatment was applied to the general law of Type I, which was taken in the
form
_ (2m+-1)! ( _ x—a )"’“’( x—a \"P
Y=gty M1 p) L (m—p)\ " o (2M) 1+0J(2M)) (16)

—0oJ(2M) <x—a<o/(2M).
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All the integrals are reduced to complete Beta-functions by the substitution

x—a=0/(2M) (20—1). (17)
. 021 2 4p2 M’ (2 1 —1 2
It is found that fy 6(7(;§nydx: :112—1;[)1; _M( m(i‘nl(l’;g_p;‘“l’ ), (18)

whence the condition that the errors of ¢ and m shall be independent is

1M 2m+4p>  (m—1)2—p?
Mom — m?*—p® (2m+1) (m—14+p2)°

(19)

This does not integrate in any convenient form. If p? is neglected it reduces to (13).
If we retain p?/m but neglect p?/m?, we find, approximately,

M = (m+3%)>m=2exp(— 3p*/m). (20)
The maximum of y and the expectation of x are respectively at

x—az——g-“/%zg)—; x—az—ﬁgn{—ffu—) (21)

exactly. But let us make the substitution (2) and try to adjust £ so that the errors of
b and p will be independent. Our condition will be

d*logy ,
dlogy  dlogy :
We shall have /S (23)

but it must be remembered that £ and M are both functions of p. The result is that &
must satisfy the equation

(m_1>(¢?k k 0M)_(m——1)2—p2 b M

ety ) = tan o (24)

m2—pt " 2M dp
But dM/dp is of order p; hence if we neglect p? we have
m—1
k==, (25)

and x—a in (1) is best replaced by x—b— (m—1) po/(2M)/m?. The best parameter
of location is therefore 4, which is near the mean, differing from it by a quantity of
order m=3; it differs from the mode by a quantity of order m~2. Considerations of
convergence indicate, as for Type II, that one or both termini should be introduced
as unknowns directly if m+p orm—pis £1.
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A closer approximation may be attempted by using (20), which gives
1L oM 3p

sMap ~ m (26)

ok 3pk\ (m—1)2—p? 3p?
and (24) becomes (m—1) (@__nf) Sy T (27)
Put E=""1u (28)

m
du 3puy  (m—1)2—p* 3p> (m—1)* 3p*(m—1)>2
Then (m—1) (%- ;1) R e

= 0(p*[m?), (29)

all terms of higher order in m cancelling. Thus « will be of order p3/m3, and we have
already neglected p?/m? in obtaining (20). We cannot therefore improve on (25)
without a much more elaborate treatment, which does not appear worth while.

To determine a law of Type I, which does not depart too far from symmetry, we
may therefore take the origin of location at the theoretical mean and define M by (20).
The errors of b, p, ¢ and m will then be nearly independent. Similar considerations
will apply to Type IV. Detailed attention to the unsymmetrical laws does not, however,
seem worth while for the present purpose, since (1) the estimates of p will have large
uncertainties in any case, (2) the true uncertainties will be larger on account of failure
of the hypothesis of independence, (3) there is a systematic personal error of the mean,
so that asymmetry about the true value is already established, and asymmetry about
the mean will hardly affect the mean if this is taken as the standard.

The practical fitting of Types II and VII can now be done as follows. We begin by
estimating the mean and ¢ as for the normal law; then, for Type II, the equation to
estimate m is

]
E%Zlogy = 0, (30)

d -4 — '~-~1m]
or nf 4 log(m—g)!—_ log(m Dt 2(m+%)

2(x—a)? m(m—1) (x—a)? _
Sy AR e S (R e

—Zlog(L— 0. (31)
The digamma functions were taken from the British Association Tables. The functions
of m can be computed irrespective of ¢. The function on the left can then be computed
for a set of trial values of m, using the approximate values of a and ¢. The value of m
that makes it zero is then found by interpolation. There is one slight complication, since

. - g . 3 1 )
the asymptotic expression for the factor multiplying 7 is SWME%NSJF O(m=*); and this


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A \
I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LAW OF ERROR AND COMBINATION OF OBSERVATIONS 261

gives a fair approximation down to quite small values of m. The result is that all terms
vary rapidly with m, and linear interpolation would be dangerous. This can be avoided
by multiplying the equation by m?2. There are other reasons for this device. The change
in y for moderate values of (x—a)/o is proportional, nearly, to 1/m. Let us then put
4= 1/m. The problem of fitting a distribution of chance to a series of observed fre-
quencies is fundamentally a generalized one of sampling. The ultimate problem is to
estimate the chances in different ranges of the argument. We could get an estimate of
m by simply comparing the number of observations in the range where its effect is
positive with the whole number, and this would be a problem of simple sampling.
But in sampling we ordinarily take the prior probability of a chance as uniformly
distributed, and as the larger chances here are linear in 4 we should take that of y as
uniformly distributed if we are to be consistent. Hence the posterior probability density
for 4 would be proportional to /1(y), and would be greatest where

J
(TﬂZflogy =0, | (32)

which is equivalent to multiplying (31) by —m?2. The probability distribution for g,
given the observations, will be nearly normal. This does not apply to m, especially
when m is large. The standard error of # will then be given by
1 0?
which is easily estimated by differencing.
For Type VII the equation is
d d 1 m?(x—a)?
- N B U -
(o8 m! = g to8n 9! =gy ) = o814 3755
m?(m-+1) (x—a)?
20%(m—%)* {1 +m*(x—a)*/2(m—})* 0%}

+ (34)

The asymptotic expansion of the coefficient of 7 is — ~—3, and it is again desirable
8m

8m?
to multiply by m? before interpolation. In the following table the sign of 4 is reversed
for laws of Type 11, since these laws give departures from normal in the opposite sense
from those of Type VII.

m (by
2 . m 2o (u) x? moments)
Bisection 1 0-111 +0-037 9-0 9-0 3-6 16-6
2 0-04? + 0-04 2577 1? 0-2 132

3 —0-225 + 0-057 4-5 (IT) 15-6 6-1 4-4
Bright line 1 0-230 4+ 0-057 4-3 16 6-5 52
) 2 0-163 + 0-050 6-1 10-6 0-7 50
3 —0-080 + 0-049 7-3 (II) 27 ) 74 4-6

Bond 0-123 + 0-051 8-2 5-8 5-6 8-67

For comparison I give the values of ¥ for the symmetrical departure found earlier
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in this paper by extended grouping, and the values of m found by the method of moments.
The first six were taken from Pearson’s paper, the last from a discussion by Mr Hey.
In this a Type VII law was fitted directly.

The column y2/0?(u) gives the square of the ratio of 4 to its standard error as found by
the most accurate method; y2 gives the same ratio as it would be found by using the
totals for the ranges where the departure from normal keeps the same sign, the ranges
being chosen to give the maximum efficiency. It is seen that the former values are
larger in all cases but one, in four cases considerably so. It appears, therefore, that the
method of extended grouping involves considerable loss of accuracy when the trial
distribution of chance is far from uniform. It has, however, been thought desirable
to give the results of the method as an illustration. The estimates for the central and
flank groups should be good ones. It was doubtful whether the treating of all observa-
tions beyond 4 2:48¢ together would sacrifice much of the information contained in
them. It appeared at first that most of this information would have been used in com-
puting the standard error, and that the rest might be no more important than when the
trial distribution is uniform, when the effect of grouping in this way would only reduce
x? by about 109%,. Apparently this is not the case. Two deviations of 3¢ and one
of 40 would produce about the same effect on the calculated standard error, and
therefore on the expectations in the central and flank groups, but apparently still
produce very different effects on the estimated departure from normal. The departure
shown by this method for the second bright-line series is entirely due to the separate
allowance for the two extreme observations.* It appears that y? is necessarily unsatis-
factory when the expectation is small, however it is used ; its status is that of a rough test,
which is easy to apply and often supplies as much information as is needed, but at best
it is an approximation and at worst an extremely bad one.

The values of m found by Pearson all allow for asymmetry. If we had a law of
Type I or IV we could reduce it to a symmetrical one with the same m by taking the
geometric means of the chances for equal and opposite values of x —a. Hence if there
is asymmetry there will be a second order bias in the estimate of m found in this way ;
we should use the geometric mean of the chances at the tails, but we do use the arithmetic
one, which is larger, and the result is that we overestimate the symmetrical departure
from normal if the law is of Type IV and underestimate it if it is of Type I. Pearson’s
values of m may therefore be expected to be larger than mine when I find Type VII,
smaller when I find Type II. There are some signs of this, but they are not decisive.
Hey, using the method of moments on Bond’s data, got m = 9-22, 2p = 2-40 for Type IV,
m = 8-67 for Type VII. The difference here is in the expected direction. Incidentally
Pearson gives his values of m to six or seven figures, of which the first is doubtful and the
second practically meaningless. In the above work, except for the preliminary calcula-

* These are so far from the main group that one might consider the presence of an abnormal
source of error. But this would reintroduce the question of rejection of observations, and would say
nothing about what we are to do in the practical case, where such observations are liable to occur.
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tion of the functions of m, which was done to five figures, four-figure accuracy was
found ample. More figures would be needed for laws that-approach the normal more
closely, but the number of observations needed to establish a departure from the
normal law would have to be much larger. The digamma functions were originally
found to seven decimals, of which the first two, for m = 10, disappeared on computing
the function actually needed. . ,

I expected originally to find that Pearson’s values of m, for the larger departures from
normal of Type VII, would be strongly biased, since the method of moments must fail
altogether at m = 3. But the relevant cases are the first and second bright-line series,
and for these his solutions differ from mine in opposite directions. The differences are
indeed rather small on the whole. Ifwe take 4 from Pearson’s m, the greatest difference
from my solution is for the first bisection series. The two values of x are 0-111 +0-037
and 0-060, so that the difference is 14 times my standard error. This happens, however,
to be the second smallest departure from normal. Pearson’s own uncertainties are much
too small. Thus he shows that the standard error of §, involves the eighth moment, and
this becomes infinite for m < 4-5 for Type VII. But he does not give standard errors as
found from the actual moments or even from his inferred values of the parameters;
he gives them as for random variations from the normal law. Hence his uncertainties
for f,, while they afford evidence against the normal law, are not those of the estimates.
These estimates of uncertainty are still extensively used, but are quite misleading.

The method of estimating m makes its error independent of that of ¢ to the first order,
but not to the second. Consequently it is desirable to test the series that give the extreme
values of # to see whether any appreciable error has accumulated in the estimate of ¢.
For the first bright-line series (Type VII) I took m = 4-5 and solved for ¢. The result
was ¢ = 4-658-10-175. The first approximation, assuming the normal law, was 4-7566,
so that the difference is under 0-6 of the standard error. For the third bisection series
(Type II) I took m = 4-5 and got ¢ = 2-636--0-068. The first approximation was
2-625, and the difference is § of the standard error. It is therefore unnecessary to revise
the estimates of ¢ for the smaller departures from normality, and as any further correc-
tion to m will be proportional to the square of the error of ¢ it is also unnecessary to
revise m.

With regard to Fisher’s statement that the method of moments is efficient for small
departures from the normal law, it needs to be noticed that the approximation depends
on the expansion of logy in a series of powers of # and p; but on inspection we see that
this is also expansion in powers of x. To estimate the uncertainties correctly we must
go to the second order in # and p, and this introduces the fifth and sixth moments.
But what is even more serious is that the logarithmic series divergesif | x —a | = ./(2M) o,
and converges slowly before this limit is reached. To simplify the arithmetic a little,
let us take the laws in the forms

x2\—m x2\m
yoc(l—}—%) 5 yoc(l——ﬂ;).

Vor. CCXXXVII. A. 34
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Let us suppose that the degree of slowness of convergence that we shall tolerate is given
by x =k, where k//m is moderate. The chance of an observation beyond £, for
Type VII, is greater than that for the limiting normal law, which is approximately
exp(—#k?)/k/m. This will remain a good approximation for Type II if the index is
large. The chance that at least one observation out of # will lie beyond + £ will exceed § is

n>g(mm) (3)""log 2

if we take £ = }./m as our limit. On the other hand, if m is to be shown to be finite
fls— 3 must exceed its standard error substantially. In this case we may use Pearson’s

uncertainty ; we have
m—3 24
b=37=2% op) = J(5),
2

whence we may reasonably require, to establish departure from the normal, that »
shall exceed 3m? considerably. The following table gives some representative values
showing 7, the maximum number of observations that may be expected to avoid slow
convergence, and n,(= 3m?) the number that must be exceeded if any determination
of such a value of m is to be possible.

m n n,
9 11 343
25 650 1875
49 193,000 7203
100 2:4 x 1010 30,000

If in fact m = 25, we shall need well over 2000 observations to detect it; but in 650
observations there will ordinarily be some beyond the range where the series gives
a satisfactory approximation. It will be only at such large values of m that the number
of observations needed to show that m is not infinite will be 10,000 or more that the
approximation by series will be of any use. The trouble is that it is biased in dealing
with the outlying observations, which are precisely the ones of most use in finding m.

We can illustrate this from the above series. The danger line is at x —a = }o./(2M),
and the series will diverge beyond ¢,/(2M). We tabulate the latter and the departure
of the extreme observation from the mean. ‘

o (2M) Extreme
Bisection 1 9-7 8
3 9-2 7
Bright line 1 11-5 25
2 144 25
3 306 27
Bond 17-0 17

The second bisection series is omitted as being practically normal. We see that in the
first and second bright-line series the extreme deviation is about twice what would
permit convergence of the logarithmic series at all; for Bond’s series it is a shade beyond
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the limit; for the first bisection series it is nearly up to it and much larger than could be
considered to give satisfactory convergence. These are all cases of Type VII. For
Type II observations beyond the range of convergence are impossible, but in the third
bisection and third bright-line series, which are of this type, the extremes approach
the limit. It appears therefore that none of these series is near the normal in the sense
required for Fisher’s highly qualified approval of the method of moments; yet one of
them has been published as an instance of the normal law.

6. Departure from independence. Pearson gives for each series of observations the means
by groups of 25 to 37 consecutive ones, and finds that the means fluctuate much more
than would be expected on the hypothesis of independence. In an illustration of a
test for independence (Jeffreys 1938¢) I have confirmed this statement. It seemed
possible, however, that this might be due to failure of the usual rule for the uncertainty
of a mean, analogous to Fisher’s result for errors derived from a Type VII law with
index 1, since some of the series agree with this type with rather small indices. On
comparison, however, I found just the opposite result to what this would imply. In
the following table I give the results for 4, with regard to sign, arranged in descending
order, and the corresponding values of 2, the ratio of the square of the standard error
of a group mean to that of one observation. For independence y? would be 0-04 or less.

“ 7 r
Bright line 1 4+0-230 0-066 0-16
2 +0-163 0-100 0-24
Bisection 1 +0-115 0-093 0-23
2 +0-04? 0:362 0-57
Bright line 3 —0-080 0-140 0:32
Bisection 3 —0-225 0-550 0-72

The order of decreasing x is practically that of increasing y2. In other words, the more
nearly the condition of independence is satisfied, the further the law of error recedes
from the normal along the Type VII series. To test the matter further, I subtracted
0-04 from each value of y?, this being approximately its expectation on the hypothesis
of independence, and took the square root, thus obtaining estimates of the range of the
non-random variation. These roots are given as r above. The correlation between u
and 7 has the astonishing value of —0-92; it is particularly surprising since the values
of both have quite appreciable uncertainties, and the true correlation may be practically
perfect. It looks as if drifting of the personal equation may account for practically
the whole of the variation of .

It can be seen qualitatively that the effect would be of this type, if we consider two
superposed normal distributions of equal totals about different means. If we have
a normal law about x¥ =  with standard error ¢, the second moment about x = 0 is

34-2
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02-+d? and the fourth 3¢*+4 6d%0%2+d* If we have two about - d, each with total
area %, their totals will be the same. Thus

My 3(0*4-2d%) o - dt g _ 2d*

ﬂz = ﬂ% - (02+d2)2 - (Jz_l_dz)’é'

3
Now for a Type II distribution fy =3 %% ,
2

and therefore if we try to fit a Pearson law to a compound distribution of this type
we shall infer that it is of Type II. Further, our estimate of x, will really be ¢2+-42,
while the y? of the present work will be d%/(¢?--d?%). The extreme value of y? is about
0-5, and therefore we may take d? = ¢2, and therefore f, = 5. This would be inter-
preted as a Type II law with m = 3-5, which is beyond the range of m actually found.
If we take the extreme value g = —0-225 and add £ to allow for the possible effect of
non-independence we get x = +0-061. Further, if the total probabilities in the two
component laws are unequal we shall find a third moment different from zero and infer
that the law is unsymmetrical; so that lack of independence may also explain asym-
metry, if any.

A further precaution is needed before we accept this explanation, since y?* is inferred
from several groups, and if the probabilities of the group means were distributed nor-
mally the resultant law would again be normal. We may therefore have overestimated
the effect. But the distribution of the group means is not random. If we subtract from
each the mean for its series and examine the signs, there are altogether 67 persistences
and 40 changes, indicating that the fluctuation affects more than one consecutive
group. Six changes have been introduced by the allowance for the mean; on correcting
for this the numbers become 67 and 34. This suggests a possibly irregular but neverthe-
less continuous variation, which cannot possibly give the kind of distribution of
magnitudes that the normal law does; it would give concentrations at definite distances
from the mean. The previous discussion gave 7, the standard deviation of the group
means. If these varied harmonically the range between the extremes would be 2,/27;
if they came from a rectangular distribution of chance it would be 2,/37. The following
table shows the comparison, in Pearson’s original units.

Range T 221 237
Bisection 1 0-027 0-0075 0-022 0-026
2 0-055 0-0185 0-053 0-064
3 0-064 0-0195 0-055 0-068
Bright line 1 1-066 0-304 0-86 1-06
2 1-333 0-371 1-04 1-29
3 2-34 0-682 1-94 2-37

The ranges between the extreme values are therefore in very good agreement with what
we should expect from a rectangular distribution; they are both smaller and in a much
steadier ratio to 7 than we should expect from a normal one. Let us therefore repeat the
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previous work on the supposition that the mode fluctuated between 4 £ according to
the rectangular law. For a given element of the range of the mode, da, the contributions
to the zero, second, and fourth moments will be

1 s, onda . 22, 4 da
_Qka'a, (62 +a )~—2k, (30*+602%a%+a )——Qk
and on integration we shall have

fy = 02+ 1KYy = 304 2072 3k,

But T2 = k%
Mg 6T
and therefore Py = e 3 5 (02122

With y% = §, therefore, we should find £, = 2:700, and this would be interpreted as
coming from a Type II law with m = 7-5. The correction to x will therefore be -+ 0-133
and the corrected result for the third bisection series —0-092. Uniform distribution
of a fluctuating personal error over a range will therefore not account directly for the
whole of the variation of z between these series. Nevertheless the value of 4 is so highly
correlated with the degree of independence that it appears to be legitimate to try to
extrapolate to complete independence (r = 0) on the hypothesis of linearity. The line
of regression of x on 7, taken to r = 0, gives 4 = -+ 0-306. But this has uncertainties
from the means of x4 and 7, and from the uncertainty of the correlation coefficient,
which is not symmetrically distributed since it is so near — 1; Fisher’s transformation
(1936, p. 200) suggests that limits corresponding to the standard error in a normal
distribution would be at 0-77 to 0-97, giving the extrapolated x as 0-262 to 0-321. These
may be taken as the correct limits, since their range is three times that given by the
uncertainties of the means. If the relation inferred above between independence and
the value of x is general, therefore, we may say that the law of error, if complete
independence held, would be a Type VII one with index probably between 3 and 4.

7. This would have some remarkable consequences. If a set of observations appears
to satisfy the normal law, it would be evidence that they are not independent and that
all uncertainties found from them by the usual formulae are too low. It is, of course,
well known that such a set may give too low an uncertainty on account of dependence;
but if this suggestion is right it must. Now it often happens that two estimates by different
methods or even by the same method differ by larger amounts than would be expected
from their apparent standard errors, and the difference is usually attributed to some
systematic error. Butif the law of error is as above, and the estimates are those adapted
to the normal law, many of these differences may quite well be random error. It is
said that the probability of the error of the mean will be normally distributed, even if
those of the separate observations are not, but the argument that leads to this involves
the same approximations as are made in the proof of the normal law for one observation.


http://rsta.royalsocietypublishing.org/

a4
I\

A A

L

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

268 HAROLD JEFFREYS ON THE

There is no reason to suppose that it is valid for large errors, merely that it will usually
be right for moderate ones. An extreme case to the contrary is provided by the law
(1+4-x2)~1; for which the mean of any number of observations has the same probability
law as one observation. But for any law of the form (1+x2)~™ the even moments of
order 2m—1 and more are infinite, and those of the same orders for the mean of any
finite number of observations will also be infinite. Hence large random errors of the
mean must occur more often than the normal law indicates. For the scale of the law
the difference is even greater. Fisher shows (1922, p. 342) that the efliciency of the

. . . . . 12 .
second moment for determining the scale is, in his notation, 1 ) where his 7
is my 2m— 2; so that the efficiency is 1 — Z;ﬂ—“f)g(—m——i—) . We have the following values:
- —2

m<25, 0; m=3, 0:40; m = 3-5, 0:60; m = 4, 0-72. If the number of observations is
not very large, therefore, the scale may be quite wrongly determined. This is just the
case where the posterior probability distribution of the true value differs most greatly
from the normal, even when the fundamental law is normal; the reason being that this
distribution contains contributions from all values of 7, and the integration with regard
to ¢ seriously alters the form of the law. Large differences of the true value from the
mean are more probable than they would be if the estimate of ¢ was an exact deter-
mination, because it may be too low, and if it is, large errors of the mean, in relation
to the estimated scale, will be more probable. This point was first noticed by ““Student”
(1908), and I have rediscussed it elsewhere (1937¢). But if in addition the law is such
that the error of the scale may be magnified by 2-5% or (5/3)# by ineflicient methods of
fitting, the effect will be greatly increased. As a rough illustration, we may consider
the values of ¢, the ratio of a deviation to its estimated standard error, when the law
of error is normal, given in Fisher’s table (1936). For an infinite number of observations
the 5 9, limit is at £ = 1-96; for 6 observations (n = 5 in the notation of the table) it is
at ¢ = 2-57, the difference being due to allowance for the uncertainty of the standard
error. Ifthishas to beincreased 30 9, the limit will be about ¢ = 2-75. The corresponding
values for the 1 9, limit will be 258, 4:03, 4-46. This extrapolation is quite rough, but
it is enough to show that with the usual methods of fitting, not much confidence need
be placed in a discrepancy of about four times the estimated standard error, if the
number of observations is small ; in other words, in a discrepancy 1-8 times the estimated
standard error of one observation.

Returning to 5 (9) we see that the equations for determining ¢ and ¢ by the method
of maximum likelihood are

d - J m Xx—a :

—%logL - %logy T M2 1+ (x—a)22Mo? 0, (1)
J N d nom (x—a)? B

“aei08 L = =25 108y = s e ayeane — O (2)
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It is obvious that if these are used the errors of the estimates will follow much more
closely the laws found from the normal law. They are equivalent to giving weights
inversely proportional to 1+ (x—a)?/2Mo?; thus the importance of the outlying
observations is much reduced. But it was the large contributions made by these to the
estimates of the mean and standard error by the usual methods that produced the
infinite (2m—1)th and higher moments for the mean, and the large uncertainty of
the second moment. If these estimates are used, the probability of the errors of the
estimated a should follow ““Student’s” rule much more closely. The equations can be
solved, for an adopted m, either by using trial values and interpolating, or by starting
with the usual solution and proceeding by successive approximation. The results of
this paper suggest m = 3-5 as a reasonable value. Then M = 33/3-52 = 2:204, and the
weight will drop to } at about x—a = 2:1¢. When some hundreds of observations are
available it will, of course, be possible to make an independent determination of m
and also of the degree of independence of the observations. The latter point is the more
important, since it is known that a first order change in the distribution of the weights
produces only a second order one in the uncertainties of the estimates.

To estimate the uncertainties we have the rules, since those of ¢ and ¢ are independent

to the first order,
1 02 1 02

)~ azlogl, 2@ &TzlogL (3)

These can be evaluated directly for any actual series; or we can use their expectations
as approximations. We find

32logy B m3
o5 o = Gy “

f 02logy dx — 271—1—)102, (5)
whence 0%(a) = (m+l)ézg——)202’ o*(7) *%1_)—;- (6)

The infinite uncertainty of the latter for m = } is due to the fact that the Type VII law
becomes impossible then. These expressions are valid over the whole range of the law,
but direct calculation from the observations is desirable in individual cases until more
is known about the extent of the random variations.

The second moment g, is given by

o = [ye—a)?ds = (m—m%lgq)—, (7)

and the standard error of ¥ as estimated from it would be (u,/n)*. Comparing this with
(6) we have
0%(a) _(m+1)(m—3§) 3 6

2@ mm—1) mm—§) D) (r2)’ (®8)
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which agrees with Fisher’s expression (1922, p. 341). The standard error as estimated
from y, is therefore unnecessarily large by a factor of (12)# for m = 2-5; ()% for m = 3;
(%)t for m = 3-5; (28)% for m = 4. This, however, is only an average rule. The real
danger of using u, is that the probability distribution of u, for one set of observations,
given all the parameters in the law, falls off much less rapidly than for the normal law
and consequently large differences from expectation will occur oftener.

It will be noticed that the expectation of u, is a little greater than ¢2, so that suc-
cessive approximations will ordinarily decrease the estimate of the latter slightly. The
standard error of « is a little less than ¢//n. But these are only average rules, and in
individual cases the differences may be much larger and in either direction.

It may be remarked that if observations of different precisions satisfying the normal
law are combined, the effect is to give f, greater than 3, and therefore would imitate a
law of Type VII without the normal law being in fact wrong. I think, however, that the
onus of proof, since Pearson’s paper, is on those who say that it is ever right, and in any
case such a consideration would affect nothing in the treatment of actual observations.
We could make no use of the fact that a series of observations was compound unless
we knew which observations belonged to each component law. If we did, we should
treat the laws separately; but when, as is certainly the usual case, we do not, it is neces-
sary to use the rules for the type of distribution as we actually find it. In either case it
is wrong to treat all observations as of equal weight. '

In conclusion I must express my thanks to the late Dr W. N. Bond, whose observations
first attracted me to this problem, and whose assistance in the discussion of them was
most valuable; to Mr G. B. Hey, who carried out the solution by moments for these
data; to Dr Wishart, who repeatedly gave me the benefit of his experience with Pearson
curves; and to Mr Yule, who first drew my attention to Pearson’s data, which form
the main subject-matter of this paper.

SUMMARY

The limitations of the theoretical grounds for accepting the normal law of errors of
observation are discussed, and seven series of observations capable of providing tests
of its truth are examined. It is found that the ¥? test, as usually employed, is not
sufficiently sensitive to establish departures from the normal law. A wider grouping,
however, reduces the random error of y? sufficiently to show the departures clearly,
though it is still less sensitive than the ratio of the maximum likelihood solution for the
departure to its standard error. It appears that no form of the test is of much use when
the law to be tested implies very small expectations in some of the groups.

An approximation to the method of maximum likelihood for Pearson laws of T'ypes 11
and VII is developed, and extensions to Types I and IV are suggested. The approxi-
mation does not involve an excessive amount of labour or the retention of a large
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number of figures. It is found that the various series of data give laws ranging from
Type 11 with index 4+5 to Type VII with index 4-3, and that the index is closely corre-
lated with the degree of correlation of the errors within groups of successive observations;
an extrapolation using this correlation suggests that genuinely independent observations
would follow a law of Type VII with index between 3 and 4. Methods of combining
observations following such a law and determining their uncertainties are provided.
It appears that a number of discrepancies in astronomy and physics that have been
accepted as systematic may turn out to be random, since with such a law large random
discrepancies may occur more often than with the normal law if the mean and the mean
square deviation are still used as estimates.
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